If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2-23d-8=0
a = 3; b = -23; c = -8;
Δ = b2-4ac
Δ = -232-4·3·(-8)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-25}{2*3}=\frac{-2}{6} =-1/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+25}{2*3}=\frac{48}{6} =8 $
| 3/4v+21/4=-2 | | 6a=a+65 | | 3x−(x+7)=3 | | 200-16=3x | | 3x+4x+11=180 | | 3+4.50x=21 | | 4n-13=2n+5 | | 6p+2p+2=26 | | 2x+1x-4=8 | | 13-4x=20+3x | | -6(x+4)=6 | | 501-578=3x | | 8^(4x-5)=17 | | 10(1/2x+2)-5=3(x-6=1 | | 25y^2+3y=0 | | 7x+14=8x | | 12x5=98+6 | | -70.46=0+0.5(-9.81)t^2 | | (13x+6)=(8x+6) | | -3x+8=3x-4 | | 1/99=1/n+2 | | 70-10=1/4n | | 2/3x+(4)=-8 | | t/2+23=32 | | 64x+48=-6x | | (3x+5)°=(10x−7)° | | (7x+5)=(9x-13) | | 2d-18=32 | | x+3/4=9/10 | | 10x=9+4x-9 | | 6.78x-5.2=4.33x2.15 | | 10+7s=80 |